A facile method to fabricate carbon-encapsulated Fe(3)O(4) core/shell composites.
نویسندگان
چکیده
One-step synthesis of carbon-encapsulated Fe(3)O(4) core/shell composites is reported. The Fe(3)O(4) cores were formed via the reduction of Fe(3+) by glucose under alkaline conditions obtained by the decomposition of urea. The amorphous carbon shells were carbonized from glucose. A possible formation mechanism for the Fe(3)O(4)@C composite was discussed. In order to characterize these Fe(3)O(4)@C core-shell composites, high-resolution transmission electron microscopy (HR-TEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), x-ray photoelectron spectroscopy (XPS) and a superconducting quantum interference device (SQUID) magnetometer were employed to characterize the sample obtained using the above method.
منابع مشابه
Degradation of Phthalocyanine by a Core-Shell TiO2 Photocatalyst: Effect of Iron Dopping on Band Gap
In this research, initially, the sol-gel method was employed to produce γ-alumina and TiO2 catalysts with core-shell structure. Iron (III) was used as a dopant. The newlyproduced core-shells were Fe/TiO2// Fe/ γ-Al2O3 (FTFA). Sulfonated cobalt phthalocyanine was used as a dye pollutant in Merox process. By doping Fe in TiO2 catalyst, the ef...
متن کاملCharacterization of Fe3O4/rGO Composites from Natural Sources: Application for Dyes Color Degradation in Aqueous Solution
The magnetite (Fe3O4) nanoparticle and graphene oxide (GO) have become interesting materials due to their advanced applications. In this work, we investigated the fabrication of Fe3O4 nanoparticles (NPs) from iron sands and reduced graphene oxide (rGO) NPs from natural graphite. The core-shell fabrication of the Fe3O4/rGO was co...
متن کاملElectrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode
In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morph...
متن کاملFacile and Economic Method for the Preparation of Core-Shell Magnetic Mesoporous Silica
In this work core-shell structure Fe3O4@SiO2@meso-SiO2 microsphere has been successfully prepared. An inorganic magnetic core has been coated with multi-shell structure, dense nonporous silica as an inner layer and mesoporous silica as an outer layer. The dense silica shell can enhance the stability and minimize the negative effect of acidic condi...
متن کاملFe2+ Supported on Hydroxyapatite-core-shell-γ-Fe2O3 Nanoparticles as an Inexpensive and Magnetically-recoverable Catalyst for Rapid Synthesis of Benzimidazoles and Benzoxazole Derivatives
A simple and facile method for the preparation ofFe2+ supported on hydroxyapatite-core-shell-γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Fe2+ NPs) as an environmentally friendly and recyclable green catalyst is described and used for the one-pot synthesis of benzimidazoles and benzoxazole derivatives via reactions between aromatic aldehyd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2007